Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667330

RESUMO

BACKGROUND: Gaucher disease (GD) is caused by glucocerebrosidase (GCase) enzyme deficiency, leading to glycosylceramide (Gb-1) and glucosylsphingosine (Lyso-Gb-1) accumulation. The pathological hallmark for GD is an accumulation of large macrophages called Gaucher cells (GCs) in the liver, spleen, and bone marrow, which are associated with chronic organ enlargement, bone manifestations, and inflammation. Tartrate-resistant acid phosphatase type 5 (TRAP5 protein, ACP5 gene) has long been a nonspecific biomarker of macrophage/GCs activation; however, the discovery of two isoforms of TRAP5 has expanded its significance. The discovery of TRAP5's two isoforms revealed that it is more than just a biomarker of macrophage activity. While TRAP5a is highly expressed in macrophages, TRAP5b is secreted by osteoclasts. Recently, we have shown that the elevation of TRAP5b in plasma is associated with osteoporosis in GD. However, the role of TRAP isoforms in GD and how the accumulation of Gb-1 and Lyso-Gb-1 affects TRAP expression is unknown. METHODS: 39 patients with GD were categorized into cohorts based on bone mineral density (BMD). TRAP5a and TRAP5b plasma levels were quantified by ELISA. ACP5 mRNA was estimated using RT-PCR. RESULTS: An increase in TRAP5b was associated with reduced BMD and correlated with Lyso-Gb-1 and immune activator chemokine ligand 18 (CCL18). In contrast, the elevation of TRAP5a correlated with chitotriosidase activity in GD. Lyso-Gb-1 and plasma seemed to influence the expression of ACP5 in macrophages. CONCLUSIONS: As an early indicator of BMD alteration, measurement of circulating TRAP5b is a valuable tool for assessing osteopenia-osteoporosis in GD, while TRAP5a serves as a biomarker of macrophage activation in GD. Understanding the distinct expression pattern of TRAP5 isoforms offers valuable insight into both bone disease and the broader implications for immune system activation in GD.


Assuntos
Doença de Gaucher , Isoformas de Proteínas , Fosfatase Ácida Resistente a Tartarato , Doença de Gaucher/metabolismo , Doença de Gaucher/genética , Humanos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Densidade Óssea , Macrófagos/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Isoenzimas/metabolismo , Isoenzimas/genética
2.
Hepatol Commun ; 5(1): 63-73, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33437901

RESUMO

Major histocompatibility complex class I-related chain A (MICA) is a highly polymorphic gene that modulates immune surveillance by binding to its receptor on natural killer cells, and its genetic polymorphisms have been associated with chronic immune-mediated diseases. The progressive form of nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), is characterized by accumulation of fat and inflammatory cells in the hepatic parenchyma, potentially leading to liver cell injury and fibrosis. To date, there are no data describing the potential role of MICA in the pathogenesis of NAFLD. Therefore, our aim was to assess the association between MICA polymorphism and NASH and its histologic features. A total of 134 subjects were included. DNA from patients with biopsy-proven NAFLD were genotyped using polymerase chain reaction-sequence-specific oligonucleotide for MICA alleles. Liver biopsies were assessed for histologic diagnosis of NASH and specific pathologic features, including stage of fibrosis and grade of inflammation. Multivariate analysis was performed to draw associations between MICA alleles and the different variables; P ≤ 0.05 was considered significant. Univariate analysis showed that MICA*011 (odds ratio [OR], 7.14; 95% confidence interval [CI], 1.24-41.0; P = 0.04) was associated with a higher risk for histologic NASH. Multivariate analysis showed that MICA*002 was independently associated with a lower risk for focal hepatocyte necrosis (OR, 0.24; 95% CI, 0.08-0.74; P = 0.013) and advanced fibrosis (OR, 0.11; 95% CI, 0.02-0.70; P = 0.019). MICA*017 was independently associated with a higher risk for lymphocyte-mediated inflammation (OR, 5.12; 95% CI, 1.12-23.5; P = 0.035). Conclusion: MICA alleles may be associated with NASH and its histologic features of inflammation and fibrosis. Additional research is required to investigate the potential role of MICA in increased risk or protection against NAFLD.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Hepatopatia Gordurosa não Alcoólica/genética , Adulto , Alelos , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA